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Key Questions 

 Is it necessary to conduct a stochastic economic 

dispatch for the (near-) real-time operation? 

 How to formulate a stochastic look-ahead 

economic dispatch? 

 How to decide when and where in the horizon to 

apply stochastic programming? 

 How to implement an efficient algorithm for real-

time operations?  
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Increasing Renewable Penetration 
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Source: The global status of renewable energy 

Source: Solar Energy News 



Challenge of Uncertainty 
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Source: ERCOT Grid Information 

Wind Forecast vs. Actual 
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Stochastic Programming 
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Stochastic Programming Problem  

Multi-Stage Stochastic Programming 

Two-Stage Stochastic Programming 

[Birge, et. al., 2011] 



Necessary Condition 
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Stochastic Programming is Needed 
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min generation cost over a look-ahead window

s.t.

system security constraints at each stage.

Multi-stage ramping constraints.



Dynamic Look Ahead Scheduling 
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Conventional Power System Scheduling (Economic Dispatch):  

min generation cost

s.t.

system security constraints.



Dynamic Look-ahead Scheduling: 

Detailed Mathematical Formulation 

Source: [Xie et. al., 2011] 
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Look-ahead Operation Horizon 
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Source: [Gu et. al., 2012] 



Uncertainty Responses over Horizon 
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Although the uncertainties in the longer run are higher, their impacts on system 

economic risks behave much smaller than in the shorter run. 
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Mathematical Criterion 

Whether to do SLAED? horizon division? 

Mathematical Criterion 

Wind 

Uncertainty 
Contingency  

Uncertainty 

Solar 

Uncertainty 

Load 

Uncertainty 

T

total k k

k

Risk Risk

SLAED: Stochastic Look-ahead Economic Dispatch 
βk: Adjustment weighting factors 
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Hybrid Deterministic and Stochastic Horizon 
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Deterministic Portion Stochastic Portion 



Stochastic Look Ahead Dispatch 
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Objective Function 

Energy Balancing Equations 

Generators’ Ramping Constraints 

Generators’ Capacity Constraints 

Upward/Downward Short Term Dispatchable 

Capacity (STDC) Requirement 

Branch Flow Constraints 

Generators’ Output Constraints 

Upward/downward Generators’ STDC 
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Flowchart 
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Initialization 

Deterministic Look-
ahead Dispatch 

Stochastic 
Optimization? 

Horizon Division 

Scenario Generation 

Solving Stochastic 
Look-ahead Dispatch 

Post-Processing 

Next Interval 

Texas A&M University 



Computation Framework Flowchart 
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Progressive Hedging Algorithm 
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For Details 

S1 

S2 

S3 

S4 

S5 

S6 

S* 

S1 

S2 

S3 S4 
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S6 

[Watson, Woodruff, et. al., 2011] 
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Variable Fixing 
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Percentage of Unchanged Periods for Decision Variables (Month) 
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Constraints Removal 
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Variable Fixing and Constraints Removal 
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Minimize the computation time 

Probability Requirement for Variable Fixing 

Decision Variables’ self-constraints 

Probability Requirement for Constraints Removal 

Subject to 

S1 

S2 

S3 
S4 

S5 

S6 

SR 

One extensive form with 

much reduced size. 
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L-shaped Method 
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[Slyke, Wets, et. al., 1969] 
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Numerical Experiments 
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5889 Buses; 

7220 Branches; 

523 Power Plants; 

76 Aggregated Wind Farms; 

9710.4 MW Installed Wind Capacity; 

Represent 85% of Texas Demand. 

 

ERCOT System 

 

Source: ERCOT.com 
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Numerical Experiments 
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Our Stochastic Approach

Computation time for stochastic look-ahead scheduling simulation 
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Numerical Experiments 
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Problem Formulation Size for Look-ahead Scheduling 

 

Look-ahead Horizon 45 mins 90 mins 180 mins 

Deterministic Look-
ahead Scheduling 

5028 X 25707 10056 X 51414 20169 X 102828 

Stochastic Look-ahead 
Scheduling 

 (Extensive approach) 
36454 X 188468 72908 X 376936 177299 X 753872 

Stochastic Look-ahead 
Scheduling 

(Enhanced PH)* 
3776 X 11472 6504 X 26376 8568 X 44776 

% of Original Problem 
Size (Row 2) 

0.63% 0.62% 0.28% 

* For enhanced PH, the original formulation has the same size as extensive approach does. 

What is shown is the size of the final reduced form. 

 



Summary 

 We developed a stochastic look-ahead dispatch 

framework for (near)-real-time operation 

 We proposed a data driven criterion for stochastic 

programming applicability and horizontal partition. 

 We designed enhanced hybrid computational 

framework of progressive hedging and L-shaped 

method for efficient & parallel computation. 

 Future work:  

 LMP studies under stochastic economic dispatch 
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